第3節 二軸押出機を用いたポリマー系ナノコンポジット

はじめに

材料科学研究の究極の目標の一つに多機能材料の開発が挙げられる¹⁾。これらの材料はそれを 構成する物質の特性が2つ以上同時に強化された結果,2つ以上の従来の材料を一度に代替でき ることが可能となる。例えば航空機の翼や胴体に使用可能な軽量かつ高剛性,そして導電性・高 耐火性を兼ね備えた多機能複合材料である。世界規模で急速な発展を遂げたポリマー/クレイ系 ナノ複合材料もこの多機能複合材料としてこれまでに技術発展してきた。

過去 10 年間に発表されたクレイ系ナノコンポジットに関する研究報告・論文は 3000 件 以上あり,想像を絶するものがある。現在この情報を利用して普遍的な現象が起こる起源を 明らかにし,今後の新技術開発に繋げるため知識の構造化が行われているところである。ま たポリマー/クレイ系ナノコンポジット研究の全分野と用途を扱う総説記事や解説書が既に 出版されている^{2.3)}。

1. クレイ系ナノフィラー

ナノコンポジットとはナノサイズのフィラーがポリマーマトリックスに分散した系と定義でき る。ナノフィラーの大きさはおよそ 1nm から 200nm 程度が対象であるが、マトリックス中で の分散構造を制御することにより 1μm までの大きさが範疇になる場合もある。ナノフィラーに は古典的な炭酸カルシウム⁴⁰, 膨潤性グラファイト^{5.60}, シリカ微粒子⁷⁰ から最新のカーボンナ ノチューブ^{1.80}, かご状構造のシリカナノ粒子 (Polyhedral Oligomeric Silsesquioxane:POSS)^{1.9)}, 天然ナノファイバー (イモゴライト¹⁰⁾, パリゴルスカイト¹¹⁾), 更には層状チタン酸¹²⁾等 が挙げられるが, とりわけ鱗片状の層状ケイ酸塩 (クレイ, 正確にはシリケート)(図 1)を 対象にした研究が著しい発展を見せている³⁴⁰。いわゆるポリマー/クレイナノコンポジット (Polymer-Clay Nanocomposites : PCN) である。

主な層状ケイ酸塩鉱物の分類を表1に示す。スメクタイトの層電荷は1/2単位胞あたり 0.2-0.6の間にあり、モンモリロナイト(MMT)(粒子径:100-200nm)、サポナイト(粒子径: 50-100nm)がその代表的なナノフィラーである。八面体結晶部分に負電荷が局在している場合 が殆どであるが、サポナイト等四面体結晶に負電荷が発生しているものもある。四面体結晶の酸 素原子間隔ならびに八面体結晶端面のOH基はナノコンポジットを設計する上で大変重要な因子 である。

1

(a) Ordered-Intercalation 型, (b) Ordered-Flocculation 型, (c) Exfoliation 型

図1 ポリマー・クレイナノコンポジットにおけるナノ構造カテゴリー³⁾

層の型	群	亜群	種	四面体	八面体	層間
2:1	パイロフィライト	di.	パイロフィライト	Si ₄	Al ₂	—
$Si_4O_{10}(OH)_2$	タルク (x ~ 0)	tri.	タルク	Si_4	Mg_3	—
	スメクタイト	di.	モンモリロナイト	Si ₄	$(Al_2, Mg)_2$	Na, Ca, H ₂ O
	(0.25 < x < 0.6)	tri.	サポナイト	$(Si, Al)_4$	Mg ₃	Na, Ca, H ₂ O
	バーミキュライト	di	バーミキュライト	$(Si, Al)_4$	$(Al_2, Mg)_2$	K, Al, H ₂ O
	(0.25 < x < 0.9)	tri.	バーミキュライト	$(Si, Al)_4$	(Mg, Al) ₃	K, Mg, H ₂ O
	雲母	di.	白雲母	$Si_3 \cdot Al$	Al_2	К
	$(\mathbf{x} \sim 1)$		パラゴナイト	$Si_3 \cdot Al$	Al_2	Na
	脆雲母	tri.	プロゴパイト	$Si_3 \cdot Al$	$(Mg, Fe^{2+})_3$	К
	$(\mathbf{x} \sim 2)$		黒雲母	$Si_3 \cdot Al$	$({\rm Fe}^{2+},{\rm Mg})_{3}$	К
2:1:1	緑泥石	di.	ドンバサイト	$(Si, Al)_4$	Al_2	Al_2 (OH) ₆
$Si_4O_{10}(OH)_8$	(x の変化が大きい)	ditri.	スドウ石	$(Si, Al)_4$	$(Al, Mg)_2$	$(Mg, Al)_3 (OH)_6$
		tri.	クリノクロア	$(Si, Al)_4$	(Mg, Al) ₃	$(Mg, Al)_3 (OH)_6$
			シャモサイト	$(Si, Al)_4$	(Fe, Al) ₃	$(Fe, Al)_3 (OH)_6$
1:1	カオリン鉱物	di.	オカリナイト	Si ₂	Al_2	—
$\operatorname{Si}_2\operatorname{O}_5(\operatorname{OH})_4$	蛇紋石 (x ~ 0)		ハロイサイト	Si ₂	Al_2	H ₂ O
		tri.	クリソタイル	Si ₂	Mg_3	—
繊維状	セピオライト	tri	セピオライト	Si ₁₂	Mg_8	$(OH_2)_4 \cdot H_2O$
	パリゴルスカイト (x ~ 0)		パリゴルスカイト	Si ₈	Mg_8	$(OH_2)_4 \cdot H_2O$
			イモゴライト	SiO30H	Al (OH) ₃	—
非晶質	質~低結晶質		アロフェン ヒシンゲライト	$(1 \sim 2) \operatorname{SiO}_2 \operatorname{Al}_2 \operatorname{O}_3 \cdot (5 \sim 6) \operatorname{H}_2 \operatorname{O}_3 \operatorname{O}_2 - \operatorname{Fe}_2 \operatorname{O}_3 - \operatorname{H}_2 \operatorname{O}_3$		

表1 粘土鉱物(層状ケイ酸塩鉱物)の分類

x は層間電荷を示す。 di. は 2 八面体型, tri. は 3 八面体型を示す。

Na型 MMT の組成は Na_{2/3}(Al_{10/3} Mg_{2/3})Si₈O₂₀・(OH)₄ で化学式量は 734 となり,667meq の Na イオンが層間に存在しているので,理論陽イオン交換容量は 91.5meq/100g となる。完全に 層剥離したと仮定して得られる表面積は 800m²/g なので,層 1 枚当たりに(有機)カチオンは 7000 個吸着している(0.7Na⁺/nm²)^{13,14)}。よって有機処理後のインターカラント(有機カチオン) 分子は 7000 本程度 1 層間(面積で 100 × 100nm² に対応)に存在していることになる。更に 端面の-OH 基についても定量化されており,1端面当たり 500-OH 基 /100nm² (5SiOH/nm²) と見積もられる。つまり,層面(親油性)と端面(親水性)が4:1のバランスで修飾されたナ ノフィラーがポリマー中に分散することになる。インターカラントの選択は極めて重要であり, 端面結合は重要な構造形成因子である。こうしたナノスケールでの界面因子が十分に理解・解明 されたのは最近になってからのことである¹⁵⁾。

2. 技術的背景

様々な特徴をもった層状有機修飾フィラー(organically modified layered filler (OMLF))を含 む PCN 材料に関する研究が広く行われてきた³³。OMLF をフィラーとする PCN では、フィラー の各層が完全に剥離してポリマーマトリックス中に分散している状態が理想的であるとされてい る。Gardolinski と Lagaly¹⁶⁾は、剥離(exfoliation)と層剥離(delamination)の違いについて、 剥離(exfoliation)は大きな凝集体が小さな粒子に分解されることであり、層剥離(delamination) は粒子を構成する1枚1枚の層が分離する変化であると述べた(図 2)。しかしながら、ポリマー マトリックス中で OMLF を完全に層剥離させることは十分には達成されておらず、依然として ナノコンポジット研究分野における難題となっている。

図 2 剥離 (exfoliation) と層剥離 (delamination) の違い¹⁶⁾

我々の知る限り,完全な層剥離を溶融混練だけで得ることは困難である。このタイプの報告は 文献に数例ある^{17,18)}だけで,多くの場合は溶融混練中に部分的に剥離が起こった非常に小さな 領域を観察しているにすぎない。PCN における層状フィラーの層剥離は材料物性の改良を制御 するための究極の目標である。従って,ナノ構造制御のメカニズムの理解と,ナノフィラーが個々 に層剥離したナノコンポジット材料の創製という PCN 研究のゴールからは遥かに遠い所に位置 している。このため,現在も斬新なナノコンポジット作成法の研究が進められている。

3. OMLF の層剥離を目的とした研究例

超臨界 CO₂ を用いたものがある^{19,20)}。マトリックスのナイロン 6 中に様々な有機イオンで修飾されたモンモリロナイト (MMT) を分散させることを目的として,タンデム型の押し出し機に超臨界 CO₂ を注入する実験が行われた¹⁹⁾。超臨界 CO₂ を使用しない場合,印加された圧力はポリマーの自由体積を減少させることでポリマー鎖間の相互作用を増加させる。その結果,溶融粘度が増加することで MMT の層剥離を改良できるが,超臨界 CO₂ を使用した場合は溶融粘度が減少するため MMT の分散は改良されなかった。

その他の興味深いアプローチとしては、ポリマーナノコンポジットの作製中に超音波を印加す るものがある。これはポリマーと MMT の溶融相に超音波を印加するもの²¹⁾ であり、マトリッ クスの熱可塑性プラスチック中における OMLF の層間挿入と剥離、分散を向上させる方法とし て報告されている。ポリプロピレン (PP) をベースにしたポリマーナノコンポジットで同様な 実験を行った例²²⁾ では、最大出力と周波数がそれぞれ 300W と 20kHz の超音波発生器を用い る方法が試みられている。超音波処理(100W)の後にマトリックス PP 中にケイ酸塩層が分散 したと述べているが、透過型電子顕微鏡(TEM)観察結果からは超音波振動は OMLF の層剥離 に対してわずかな効果しかないことがわかる。

従って,溶融混練中の超臨界 CO₂ の注入や超音波処理では,一旦ナノフィラーの状態が決まってしまうと,ナノフィラーの分散状態が改良されない。現状では,ポリマーマトリックス中への ナノフィラーの分散は OMLF の選択に左右されているのが現実である。

4. ナノフィラーの分散状態が改良されない理由

ほとんどのナノコンポジットは二軸押出機を使った溶融混練りにて調製されている¹⁾。比較的 短時間でクレイ層間に高分子鎖の挿入,閉じ込めが完了される(melt intercalation)。クレイ層 間には予めマトリックス高分子と相溶性の良好な有機カチオン(インターカラント)がイオン交 換法によって挿入され,用いられている。しかし両者間の相溶性(エンタルピー)が重要な構造 制御の因子ではないことが最近の研究結果から報告されている^{13,14,23)}。

更にこれまでの melt intercalation の考え方としては, 鎖のもつエントロピーバランスも支配 的であるとされてきた。つまり, 有機処理されたクレイへの層間挿入において高分子ランダム 鎖のエントロピーは失われるが (3D → 2D), 有機カチオン (インターカラント) 鎖のそれが増 大することで, 結果として系全体のエントロピーは補償されていると言う考え方である²⁴⁾。し かし現実にはクレイ (MMT) 粒子が高分散したナノコンポジットが調製できた場合でも, その 層間隔は元の値と比較して拡幅せずにむしろ縮小した結果も報告されている (図4のΔ opening を参照)。

このような結果を矛盾することなく説明するにはクレイ層間におけるインターカラントのナノ 構造を理解する必要があり,異なった層電荷密度を持った(無機合成された)他のナノフィラー が研究対象として取り挙げられた^{13,14,23)}。同時にインターカラントの分子の大きさについて,そ の安定構造をシミュレーションして予測し,クレイ層間におけるインターカラントのX線回折, 熱分析結果と比較しながら検討されている。

インターカラントで修飾された,これら異なった層電荷密度のナノフィラーはいずれも図3 に描かれたような interdigitated layer 構造をとる^{13,14,23)}。

同じインターカラントで修飾されてもその層内部の構造と層間隔は大きく異なる。つま り,層電荷の値が大きいナノフィラーではインターカラントは密に充填されインターカラン トの配向角度は大きくなり,結果として層間隔(=インターカラントが占める厚み, layer opening)が広がることになる。一方層電荷密度の小さなクレイ(MMT,合成マイカ: syn-FH(Na_{0.66}Mg_{2.6}Si₄O₁₀(F)₂))では配向角度の小さな interdigitated layer 構造が優先的であるこ とがわかり,これらの構造と挿入されているインターカラントの結晶化度(Δ H)との間には強 い相関があることも見出されている²³⁾。

図 3 ナノフィラーが形成する interdigitated layer 構造¹⁴⁾

高分子鎖の挿入はインターカラント分子との相溶性とインターカラント分子間に存在している 空隙が原因で発現するナノフィラーの毛管作用から起こると考えられている。最新の研究結果に よると前者よりも後者のほうが melt intercalation には支配的に作用していると推察される²³⁾。 そして interlayer opening が小さいもの程,高分子鎖の挿入は起こりやすく,結果としてクレイ 粒子が高分散したナノコンポジットを調製することができるのである^{14,23)}。interlayer opening (つまり配向角度)が大きいと高分子鎖はインターカラントによる立体障害を受けて melt intercalation しにくい状況が起こるものと考えられる。ここで無理にでも高分子鎖が挿入され る場合は配向角度が大きく変化し,結果として層間隔の縮小が起こることになる。またたとえ 拡幅してもその変化量(*Δ* opening)は挿入されているはずの高分子鎖の分子サイズ(ポリ乳 酸:PLA の場合は 0.76 × 0.58nm²)と比較して小さくなる(図 4)。ほとんどの研究者はこの 事情を理解することなく"melt intercalation が進行した"と論文では報告している¹⁾。ナノフィ ラーの層電荷密度とインターカラントの分子サイズはナノコンポジットを調製する上で最も重 要なナノ構造制御因子である。初期の層間隔(initial interlayer opening)が小さいほど melt

PBS: poly (butylene succinate), PVDF: poly (vinylidene fluoride), PP: polypropylene, PLA: poly (L-lactide), PES: sulfonated poly (ethylene terephthalate) copolymer, SMA: poly [styrene-co-(maleic anhydride)], PPS: poly (*p*-phenylenesulfide)

各種インターカラント (*N*-(cocoalkyl)-*N*, *N*-[bis(2-hydroxyethyl)]-*N*-methyl ammonium(qC₁₄(OH)), octadecylammonium (C₁₈H₃N⁺), octadecyl tri-methylammonium (C₁₈(CH₃)₃N⁺), dioctadecyldimethylam monium (2C₁₈(CH₃)₂N⁺), and *n*-octyl *tri*-phenyl phosphonium cations (C₁₂TPP⁺) で修飾されているナノフィラー (HTO, *syn* -FH そして MMT) が用いられている。

図4 様々なポリマーを melt intercalation させた結果²⁶⁾

intercalation 後の変化量が大きいことは、ナノフィラーの毛管作用が intercalation の原因である ことの証拠である。

さらに注目すべきは挿入後の層間隔(≡インターカラントと高分子鎖が占める厚み, final interlayer opening)である。異なる層電荷密度のナノフィラーを異なる分子サイズをもつイン ターカラントで修飾し,異なった高分子(7 種類)を melt intercalation させた結果,得られた final interlayer opening は系によらず,およそ 2nm の値に落ち着いている(その結果を図 5 に 示してある)。この理由はおそらく層間に働く力,つまり負の圧力であると考えられる。2 つの 壁の間に働く界面自由エネルギーを考慮して,この圧力を見積もった結果,およそ-24MPa (圧力損失)となり大気圧(~0.1MPa)の20倍以上大きいことがわかった。この力によって 高分子鎖の melt intercalation は制限されていると推察される^{13,14,23)}。また melt intercalation 法では高分子が溶融しているためにずり応力は最大でも 0.1 MPa 程度^{14,23)}(PLA の場合,混 練温 200℃)となり,せん断力でナノフィラーの層を剥離させるにはかなり工夫が必要であ る。よって melt intercalation 法では層間挿入型ナノコンポジットは創れても,層剥離型のナ ノコンポジットを創ることは容易でない理由がここにある。従来の melt intercalation 法ではな い,固相状態を利用した全く新しい手法でナノフィラーを高度に分散させる技術が最近になって 報告された^{25,26)}。

図5 様々なポリマーを melt intercalation させた場合における挿入後の層間隔²⁶⁾

5. 開発すべき要素技術

さらに発展的な混練プロセス,特にナノフィラーが個々に分散した状態の PCN 創製のための 革新的な技術開発は急務である。

これに関連し、斎藤らは poly (p-phenylenesulfide) (PPS) をマトリックスとするポリマーナ ノコンポジットの創製法を報告した^{25,26)}。彼らの手法は、温度調節機能をもったホットプレス を用いて、PPS と OMLF の混合粉末に PPS の融点よりも低い 150℃または室温で 7 ~ 33MPa の圧縮力を 30 秒間加えるものである。調整されたサンプルは、PPS 中に厚さ 40 ~ 80nm のケ イ酸塩ナノフィラーが分散していた。マトリックスポリマーが固相の条件で処理することから solid-state processing と名付けたこの手法は、ケイ酸塩層の層剥離と分散を達成可能な方法で あることがわかった。同様な研究を Wang ら²⁷⁻²⁹⁾ はパン型ミルを用いた方法(solid-state shear processing)として報告しているが、TEM 観察結果を見る限り、ポリプロピレン (PP) マトリッ クス中でのタルクの層剥離は達成されていない。

Torkelson ら³⁰⁰ は連続処理可能な方法(solid-state shear pulverization)によって PP 中にグ ラファイトを分散させることで, PP に比べて弾性率が 100%増加する結果を得た。彼らは高い せん断と圧縮力を繰り返し印加することによってナノフィラーが分散したポリマーナノコンポ ジットを得ることができたと報告している。

剥離形ナノコンポジットを創製するための最も重要な要素は、OMLF 層間のナノ空間に作用す る負の圧力(毛管力)を弱めることである。毛管力を弱めることは、OMLF とポリマーの効果的 な混練を制御し層剥離を達成するために非常に重要な役割をもつ。solid-state processing はナノ 空間の毛管力を弱め、層状フィラーを層剥離させる革新的な技術になりうる。OMLF の層剥離が 成功すればポリマーナノコンポジットの応用範囲は格段に広がることが期待される。

6. 固相加工法(solid-state processing)による PP 系 PCN の創製 $^{_{31)}}$

6.1 広角 X 線回折プロファイルの経時変化

PPパウダー(平均粒径約 5 μ m,融点 151 \mathbb{C})と(tri-n-butyl phosphonium (C₁₆TBP) カチオンにて修飾された)OMLF の混合粉末(重量比 95:5)を作成し,混合粉末を PP の融点よりも十分に低い 65 \mathbb{C} に加熱したアルミナ乳鉢で 8 時間すりつぶされた。図 6 は広角 X 線回折(WAXD)プロファイルの経時変化である。

 C_{16} TBP によって有機修飾を行った MMT (MMT- C_{16} TBP)の(001)面の平均層間距離(d(001))は WAXD プロファイルから 2.26nm と求められた(回折角 2 θ = 3.90°)。2 時間 solid-state

processingを行った後,ブロードになったピークは 2θ = 4.00°のあたりで観察された(図6 (c))。 引き続いて行われた 3 ~ 8 時間の処理において, (001)面のピークは非常にブロードになったが, PP 結晶の monoclinic (α晶) / triclinic (γ晶)単位格子の回折は変化しない。

図 6 アルミナ乳鉢で 8 時間すりつぶされた, PP パウダー /OMLF の混合粉末(重量比 95:5) 広角 X 線回折プロファイルの経時変化³¹⁾

図7は*d*₍₀₀₁₎の solid-state processing 処理時間と強度の変化を示したものである。処理時間 が増えるにつれて*d*₍₀₀₁₎の強度はピーク位置の低角側(層間が縮む方向)へのシフトを伴いなが ら徐々に減少した。処理時間が4時間を超えると,MMT-C₁₆TBP層間距離は interdigitated layer 構造(図3)が変化したことによると思われる一定値(約2.05nm)に到達している。この構造 は異なる配向角度を取ることで加工中に層間距離を減少させたと考えられる。

6.2 モルフォロジー変化

Solid-state processing 前後のモルフォロジーを評価するため,180℃にて偏光顕微鏡(POM) 観察を行った。図8(a)は溶融混練によって作成されたサンプルのPOM 観察結果を示している。 溶融混練サンプルのPOM 写真からは凝集構造がはっきりと見て取れるが,8時間 solid-state processingを行ったサンプル(図8(b))では良い分散を示しており,そのフーリエ変換(FFT)パター ンは未処理(溶融混練)サンプルと比べて等方性を持つ弱い散乱を示す。このことは solid-state processing 中に分散しているフィラーの粒子サイズが小さくなっていることを意味している。

(a) solid-state processing 処理前, (b) solid-state processing 処理(8時間), 図中左下には対応する フーリエ変換パターンが示されている。

図8 偏光顕微鏡にて観察された solid-state processing 前後のモルフォロジー変化³¹⁾

図9はPOMと同じサンプルのTEM写真とそのFFTパターンを示している。図中の黒い線は 層状ナノフィラーの断面である。図9(a)(未処理サンプル)では約3µmの厚さを持つ大きな 凝集構造がみられる。一方,図9(b)においては,ナノメートルサイズの厚さをもった層が観 察野全体に分布している。図9(c)では3~7nmの厚さと50~200nmの長さを持つ不規則 で層剥離したケイ酸塩層がみられる(平均厚さ5.8nm,平均長さ67nm)。ケイ酸塩層の剥離が 観察されたことは非常に興味深い(表2)。

500n

(a) solid-state processing 処理前, (b), (c) solid-state processing 処理(8時間)。
図中左下には対応するフーリエ変換パターンが示されている。

図9 透過型電子顕微鏡にて観察された solid-state processing 前後のモルフォロジー変化³¹⁾

Parameters	TEM image	FFT with DB theory
$L_{\rm MMT}/\rm nm$	67 ± 6	
t _{MMT} /nm	5.8 ± 0.5	3.7
$\xi_{\rm MMT}/\rm nm$	45 ± 2	157

表 2	フィラーの分散状態を表す形態	因子
L L		

図 10 は図 9 (c) の FFT 解析から得られた 1 次元散乱パターンを示している。ここで,散乱 強度 (*I*(*q*)) は散乱ベクトル (*q*) の関数として示している。図から *q* = 0.02nm⁻¹ あたりに広い 肩が,*q* が 0.04 ~ 0.09nm⁻¹ の範囲に小さな残留ピークが見て取れる。その幅の広さは分散し た OMLF 粒子がかなり不規則になっていることによる。0.02 ~ 0.1nm⁻¹ の範囲での *q* の強度 減衰は *I*(*q*) = *q*⁻¹ の形での減衰によると考えられ,その結果として求められた分散粒子のフォー ムファクターは、ランダムに配向した棒状、という結果であった。確かに、TEM イメージ中に は棒状で分散した OMLF 粒子が含まれている(図 9 (c))。

図 10 図 9(c)のフーリエ変換解析から得られた 1 次元散乱パターン³¹⁾

TEM イメージと FFT 解析から得られたフォームファクターと Debye-Bueche 理論を組み合わ せて, 粒子長 (L_{MMT}) と厚さ (t_{MMT}) の平均値, さらに粒子間の相関長 (ξ_{MMT}) が評価された (表 2)。 Solid-state processing なしに加熱によって作成されたサンプルにおいて TEM イメージ (図 9 (a)) から求めた L_{MMT} と t_{MMT} はそれぞれ 6 ~ 10 μ m と 1 ~ 3 μ m である。一方, solid-state processing によって作成された PP/OMLF は MMT-C₁₆TBP の $d_{(001)}$ のほぼ 2 倍の厚さ ($t_{MMT} = 5.8 \pm 0.5$ nm)をもち, L_{MMT} (67 ± 6nm)の値も小さかった。solid-state processing を行っ た PP/OMLF の ξ_{MMT} 値 (45 ± 2nm) は, ケイ酸塩層がより均一に分散したためだと考えられる。 TEM 写真から求めた ξ_{MMT} の絶対値は Debye-Bueche プロットから得られたものよりも遥かに小 さいが, この理由は今のところ明らかでない。しかしながら, t_{MMT} の値は Debye-Bueche プロッ トから得られたものとほぼ同じである。solid-state processing 後, MMT-C₁₆TBP は 2 層程度ま でになってよく分散している。この結果はケイ酸塩層の剥離という点で非常に興味深い。これは ナノ空間中の有機イオンの融点が- 23.5℃と低いため,処理温度においてナノ空間中の有機イ オンは潤滑材として作用し,観察されたような層剥離が 65℃で得られたと考えられる。

6.3 2 軸混練機による固相加工

さらに,斎藤らはアルミナ乳鉢の代わりに2軸混練機を用いた solid-state processing を行っ ている。50°C, 50rpm で5時間の混合処理によって,ケイ酸塩層の分散モルフォロジーはアル ミナ乳鉢の場合と同様な傾向を示した(図 11)。TEM 写真から求めた L_{MMT} と t_{MMT} は,それぞれ 372 ± 38nm と 33.2 ± 3.8nm であった。

これらの結果から, solid-state processing はナノ空間中にはたらく毛管力(~ 24MPa)を克服し,ポリマーマトリックス中に OMLF を分散させうる非常に効果的な方法であると確認できる。

図 11 2 軸混練機を用いた solid-state processing 後の透過型電子顕微鏡像³¹⁾

まとめ

Solid-state processing によって層状フィラーのナノ構造を制御する斬新で合理的な方法を解説 した。この手法によってケイ酸塩層の剥離と分散をもたらすことができ、ナノフィラーの構造が 有するナノ空間中に発現する毛管力に打ち勝って PCN を創製することが可能となる。

- 1) F. Hussain, M. Hojjati, M. Okamoto, R. E. Gorga, J. Comp Mater., 40, 1511 (2006)
- L. A. Utracki, Clay-Containing Polymeric Nanocomposites, Rapra Technology Ltd., Shawbury, London, (2004)
- 3) S. Sinha Ray, M. Okamoto, Progress in Polym. Sci., 28, 1539 (2003)
- 4) M. Q. Zhang, M. Z. Rong, K. Friedrich, In : Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites. H. S. Nalwa Ed., American Science Publishers, California, (2003)
- 5) A. Celzard, E. McRae, J. F. Mareche, G. Furdin, M. Dufort, M. Deleuze, J. Phys. Chem. Solids, 57, 715 (1996)
- 6) H. Kim, Y. Miura, C. W. Macosko, Chem. Mater., 22, 3441 (2010)
- 7) M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, K. Friendrich, Polymer, 42, 3301 (2001)
- 8) S. Subramoney, Adv. Mater., 10, 1157 (1998)
- 9) L. Zheng, R. J. Farris, E. B. Coughlin, Macromolecules, 34, 8034 (2001)
- 10) K. Yamamoto, H. Otsuka, S. Wada, D. Sohn, A. Takahara, Soft Matter, 1, 372 (2005)
- 11) G. Qipeng , X. Liang, H. Jinyu, C. Tianlu, W. Kuiren, Eur. Polym. J., 26, 355 (1990)
- 12) R. Hiroi, S. Sinha Ray, M Okamoto, T. Shiroi, Macromol. Rapid. Commun, 25, 1359 (2004)
- 13) O. Yoshida, M. Okamoto, J. Polym. Eng., 26; 919 (2006)
- 14) O. Yoshida, M. Okamoto, Macromol. Rapid Commun., 27; 751 (2006)
- M. Okamoto, In : Macromolecular Engineering. Precise Synthesis, Materials Properties, Applications, K. Matyjaszewski, Y. Gnanou, L. Leibler Eds., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2071 (2007)
- 16) J. E. F. C. Gardolinski, G. Lagaly G, Clay Miner., 40, 547 (2005)
- 17) A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, O. Kamigaito, J. Mater. Res., 8, 1174, (1993)
- 18) Y. Katoh, M. Okamoto, Polymer, 50, 4718 (2009)
- 19) K. Yang, R. Ozisik R, Polymer, 47, 2849 (2006)
- 20) R. J. Bellair, M. Manitiu, E. Gulari, R. M. Kannan, J. Polym. Sci. Polym. Phys., 48, 823 (2010)
- 21) E. C. Lee, D. F. Mielewski, R. J. Baird, Polym Eng Sci, 44, 1773 (2004)
- 22) L. Zhao, J. Li, S. Guo, Q. Du, Polymer, 47, 2460 (2006)
- 23) T. Saito, M. Okamoto, R. Hiroi, M. Yamamoto, T. Shiroi, Macromol. Mater. Eng., 291, 1367

(2006)

- 24) R. A. Vaia, E. P. Giannelis, Macromolecules, 30, 7990 (1997)
- 25) T. Saito, M. Okamoto, R. Hiroi, M. Yamamoto, T. Shiroi, Macromole. Rapid Commun. 27, 1472 (2006)
- 26) T. Saito, M. Okamoto, R. Hiroi, M. Yamamoto, T. Shiroi, Polymer, 48, 4143 (2007)
- 27) W. Shao, Q. Wang, K. Li, Polym. Eng. Sci., 45, 451 (2005)
- 28) W. Shao, Q. Wang, H. Ma, Polym. Int., 54, 336 (2005)
- 29) W. Shao, Q. Wang, F. Wang, Y. Chen, J. Polym. Sci., Polym. Phys., 44, 249 (2006)
- 30) J. Masuda, J. M. Torkelson, 41, 5974 (2008)
- 31) T. Saito, M. Okamoto, Polymer, 51, 4238 (2010)